Fall 2022

Midterm Exam

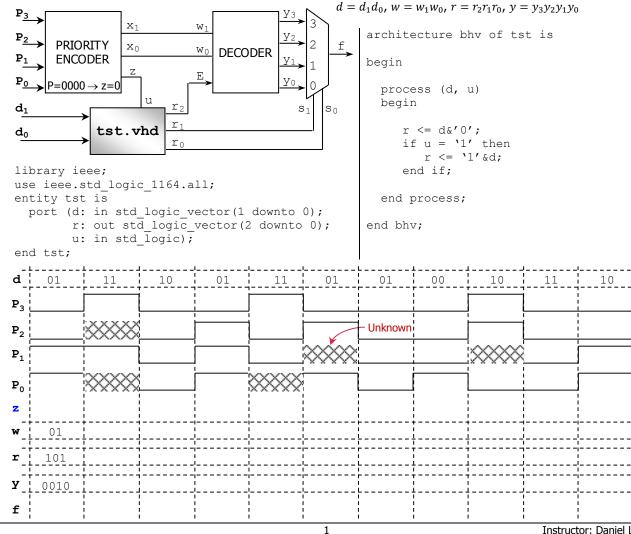
(October 19th @ 3:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (22 PTS)

a) Complete the following table. The decimal numbers are unsigned: (3 pts.)

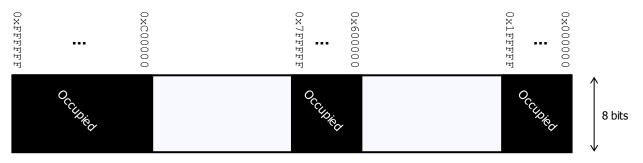
Decimal	BCD	Binary	Reflective Gray Code
			101010
		01000101	


b) Complete the following table. Use the fewest number of bits in each case: (15 pts.)

REPRESENTATION				
Decimal	Sign-and-magnitude	1's complement	2's complement	
	110011			
		11111		
			1000	
		011101		
-16				
			101000	

c) Convert the following decimal numbers to their 2's complement representations. (4 pts.) ✓ -16.5 18.75

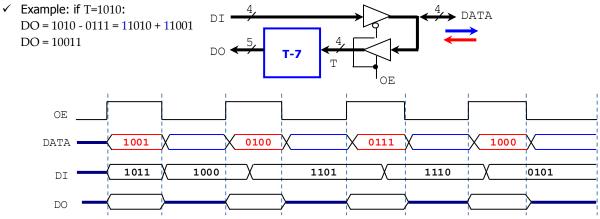
PROBLEM 2 (14 PTS)


Complete the timing diagram of the following circuit. The VHDL code (tst.vhd) corresponds to the shaded circuit.

Instructor: Daniel Llamocca

PROBLEM 3 (12 PTS)

- The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. 1KB = 2¹⁰ bytes, 1MB = 2²⁰ bytes, 1GB = 2³⁰ bytes
 - ✓ What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor? (3 pts.)
 - \checkmark If we have a memory chip of 2 MB, how many bits do we require to address those 2 MB of memory? (1 pt.)
 - ✓ We want to connect the 2 MB memory chip to the microprocessor. For optimal implementation, we must place those 2 MB in an address range where every single address shares some MSBs. Provide a list of all the possible address ranges that the 2 MB chip can occupy. You can only use the non-occupied portions of the memory space as shown below.



PROBLEM 4 (17 PTS)

- a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits *n* to represent both operators. Indicate every carry (or borrow) from c₀ to c_n (or b₀ to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (6 pts.)
 ✓ 29 51
- b) Perform the following operations, where numbers are represented in 2's complement. Indicate every carry from c_0 to c_n . For each case, use the fewest number of bits to represent the summands and the result so that overflow is avoided. (8 pts.) \checkmark 29 - 51 \checkmark -53 - 26
- c) Get the multiplication result of the following numbers that are represented in 2's complement arithmetic with 4 bits. (3 pts.) $\sqrt{-5 \times 7}$

PROBLEM 5 (11 PTS)

• Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box computes the signed operation T-7, with the result having 5 bits. T is a 4-bit signed (2C) number.

PROBLEM 6 (10 PTS)

• Sketch the circuit that computes |A - B|, where A, B are 4-bit <u>unsigned</u> numbers. For example, $A = 0101, B = 1101 \rightarrow |A - B| = |5 - 13| = 8$. You can only use full adders (or multi-bit adders) and logic gates. Your circuit must avoid overflow: design your circuit so that the result and intermediate operations have the proper number of bits.

PROBLEM 7 (14 PTS)

- Given the following Boolean function: $f(x, y, z) = \prod M(3, 4)$
 - a) Provide the simplified expression for f and sketch this circuit using logic gates. (4 pts)
 - b) Implement the previous circuit using ONLY 2-to-1 MUXs (AND, OR, NOT, XOR gates are not allowed). (10 pts)